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We propose a scheme to construct transferable minimal basis of localized orbitals for ab initio calculations.
We first extract a set of highly localized Wannier-type orbitals from the reference systems. For each orbital, we
decompose it to a pseudoatomic orbital, augmented by small local functions centered at its nearest-neighbor
atoms. When applied for a real system, the center of each local function moves with its associated atoms,
without changing its shape and amplitude. We have done intensive tests of this scheme for III–V and group IV
semiconductors and find the modified orbitals have very good transferability while still keep the basis size
minimal. This work discusses why Wannier and Wannier-type functions are not transferable as one may expect.
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I. INTRODUCTION

The first-principles method based on the density-
functional theory �DFT� �Refs. 1 and 2� is nowadays an in-
dispensable tool to explore the physical properties of
condensed-matter and materials systems. Plane-wave basis
�PWB� set has been used widely because it has many attrac-
tive features.3 For instances, the basis set is independent of
atom positions, therefore it is easy to implement, and the
forces can be easily calculated. Furthermore the quality of
the basis can be systematically improved by a single param-
eter, energy cutoff. Plane wave basis is very efficient for a
system of modest size.3 However, it become very inefficient
as the system size grow up since the computational effort
needed increase as N3 with respect to the number of in-
equivalent atoms N in the system, which limit the simulation
in the systems up to hundreds of atoms.

Alternatively, highly localized basis set can be much more
efficient, especially for the large systems. Because of the
localization character, the localized basis are very suitable
for the so-called order-N method.4 Therefore, there has been
continuous interests in constructing high quality localized
basis set for DFT calculations.

In principle, there are two ways to construct local basis
set. One is the “bottom up” approach, including various
scheme to construct numerical orbitals.5–16 For example, the
numerical orbitals can be constructed by applying certain
confinement potentials to the isolated atoms.6,14 To ensure
the transferability of the orbitals, one could use larger basis
set, by using more than one radial function for each angular
moment �multi ��, or by including higher angular moment
orbitals �polar orbitals�. It is also possible to use smaller
basis set, provided the radial functions are optimized as part
of the self-consistency cycle.16 The alternative way to con-
struct the local basis is a “top down” method. One may ex-
tract local orbitals, e.g., the Wannier functions17,18 from the
Bloch states calculated for some reference systems, assuming
that they are transferable to systems which are similar to the
reference systems. These local orbitals form the minimal ba-
sis that are exact for the reference states. This scheme could

potentially have many applications since many nanosized
systems �e.g., the self-assembled quantum dots19� are ex-
tremely close to their bulk materials, except that they are
usually strained or alloyed. One may expect that Wannier
function should work very well in these situations. Unfortu-
nately, it has been shown that the transferability of the Wan-
nier functions is unsatisfactory even when the chemical en-
vironment is very similar to the reference systems.4,20

In this work, we propose a scheme to improve the trans-
ferability for Wannier �or Wannier-type� functions that could
be used as transferable minimal basis for ab initio calcula-
tions. Our starting point is a set of highly localized Wannier-
type orbitals constructed from some reference systems. For
each orbital, we decompose it to a pseudoatomic orbital, aug-
mented by small local functions centered at its nearest-
neighbor �NN� atoms. When applied for a real system, the
center of each local function moves with its associated atoms
without changing its shape and amplitude. We have done
intensive tests of this scheme for III–V and group IV semi-
conductors. We found the modified orbitals have very good
transferability while still keep the basis size minimal. The
work also discusses on why Wannier and Wannier-type func-
tions are not transferable as one may expect.

The remainder of this paper is organized as follows. In
Sec. II we describe the details on how to construct the mini-
mal local basis. We present the test results of the basis sets
for typical III–V and group IV semiconductors in Sec. III.
We summarize in Sec. IV.

II. METHODS

The calculations are all based on DFT, within local-
density approximation. We use norm-conserving,21 fully
separable pseudopotentials,22 and Monkhorst-Pack k points
sampling.23

The first step of our scheme is to construct a set of highly
localized orbitals for a given reference system. There are
many ways to do this, e.g., the maximally localized Wannier
orbitals proposed by Marzari and Vanderbilt24 and later on
was generalized to include partially occupied bands25 and to

PHYSICAL REVIEW B 80, 165121 �2009�

1098-0121/2009/80�16�/165121�7� ©2009 The American Physical Society165121-1

http://dx.doi.org/10.1103/PhysRevB.80.165121


the nonothorgonal Wannier functions.26 In this work, we use
the highly localized quasiatomic minimal basis orbitals
�QUAMBOs� proposed by Lu et al.27 as our starting point to
construct localized, transferable minimal basis.

Details on how to construct QUAMBOs can be found in
Ref. 27. Here we only give a brief description to this method.
The objective is to construct a set of highly localized atomic-
like orbitals, A��r−ri�, centered at atomic position ri, by
linear combinations of the Bloch orbitals. We first choose a
set of bands ���k ,r� that we want to represent faithfully by
the local orbitals. For self-consistent DFT calculations, all
valence bands must be included to give correct charge den-
sity. We may also include certain low energy conduction
bands, if we want to study, for example, the optical transi-
tions of the systems. Additional higher Bloch bands are used
to make the orbitals more localize. These bands were called
virtual bands.27 The virtual bands are not necessarily faith-
fully represented by the QUAMBOs. We can write the QUA-
MBOs as

A��r − ri� = �
k,�

a�,��k,ri����k,r� + �
k,p

bp,��k,ri��p�k,r�

�1�

where,

�p�k,r� = �
�

T�p�k����k,r� �2�

is the optimal subset of the virtual bands ���k ,r�. T�p�k� is a
rectangular matrix that satisfies the orthogonal condition
��T�p

� �k�T�q�k�=�pq. The central idea of this method is to
choose the optimal subset of the Bloch states �i.e., the T
matrix� so that A��r−ri� have “maximal similarity” to the
free-atom pseudoatomic orbitals �PAOs� ���r−ri� while still
represent the selected Bloch bands ���k� faithfully. More
details on how to construct QUAMBOs can be found in Ref.
27. Generally, the QUAMBOs are more localized if more
virtual bands are used. There is a special case, where the
number of the bands we want to faithfully represent equals
the number of the local orbitals. In this case, no virtual bands
is used and the obtained local orbitals are just a set of gen-
eralized Wannier orbitals. For III–V semiconductors, we
have eight local orbitals.

To construct QUAMBOs, we first carried out first-
principles calculation using PW basis sets. We use the energy
cutoff 36 Ry, and 6	6	6 k mesh. In our calculations for
the III–V compounds, we selected the lowest five bands �four
valence bands and the lowest conduction band� to be repre-
sented faithfully. We use additional 59 bands as the virtual
bands. We found no apparent difference if 123 bands are
used as the virtual bands. Figure 1 depicts the QUAMBO s
orbitals of Ga and As atoms alone the �111� direction, com-
pared with the PAOs of free atoms. We can see that the
QUAMBOs and corresponding PAOs are very similar to
each other, except near the center of their adjacent atoms.

The obtained QUAMBOs can be expanded into Kubic
functions28 or into spherical harmonics. Here we choose
spherical harmonic functions to do the expansion. The �th
orbital of ith atom can be written as

Ai��r� = �
l=0

lmax

�
m=−l

l


lm�r�Ylm�r̂� . �3�

Here, l and m are the angular-momentum quantum number
and the magnetic quantum number, respectively. In practice,
we found use lmax=18 can represent the QUAMBOs very
well.

One may expect that the QUAMBOs could be a transfer-
able minimal basis set because they are very localized and
are extremely close to the PAOs. However, as will be shown
in latter sections, the QUAMBOs are not transferable as one
might think. The reason, which can be seen from Fig. 1, is
that the orbitals are different from PAOs near the center of
their adjacent atoms. The deviation from PAOs is unavoid-
able since we know that PAOs cannot faithfully represent the
electronic structures of the solid system.8 In this work, we
propose a unique scheme to improve the transferability of the
QUAMBOs. This scheme can be used to other type of local
basis set, such as Wannier functions as well.

We rewrite Eq. �3� into a multicenter projection form

Ai��r� = ci��i��r� + �
j=1

NN

ai�j�i�j�r − r j� , �4�

where, �i� is the �th PAO centered at the ith atom and
�i�j�r−r j� is a set of local wave function centered at r j
which is the position of its adjacent atoms. Usually �i�j�r� is
extremely small except at the NNs of the ith atom because
the QUAMBOs is constructed to have most overlaps with the
PAOs. We therefore only sum j over the NNs of the ith atom.
When use this basis set, we assume the coefficients ci�, ai�p
and the shape of �i��r� and �i�j�r−r j� remain unchanged
�except an overall normalization factor� while only their po-
sition move with the center of the atoms. The scheme is
motived by the fact that the Wannier functions are the solu-
tions of the on-site �pseudo�potential plus screened potentials
of nearby atoms.29 The augmentations to the PAO are due to
the screened potentials of nearby atoms and should move
with the atoms. �i�j�r−r j� can also be expanded into spheri-
cal harmonic functions. Here, we use lmax=2. To ensure strict
localization, we smoothly truncate the wave function,12,14 us-
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FIG. 1. �Color online� Profiles of the QUAMBOs s orbitals in
GaAs alone the �111� direction, compared with the PAOs. The Ga
and As atoms are located at 0 and about 5 a.u., respectively.
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ing a Fermi-distribution-like function. The truncation radii
are chosen to be 6 a.u. unless otherwise noticed in the paper.
In all calculations, we use the periodic boundary conditions
and the linear combination of atomic orbitals Hamiltonian is
obtained in Bloch space. As a consequence, the Hamiltonian
includes interactions up to infinite neighbors.8 We name the
basis set constructed based on the above scheme as the mul-
ticenter minimal basis �MCMB�. When the MCMB is ap-
plied in ab initio calculations, every atom in the system has
different orbitals. However, the orbitals can be easily con-
structed according to some simple rules, i.e., by simply mov-
ing the centers of the augmentation functions. The cost of
constructing the orbitals is minima and proportional to the
number of atoms in the system. Importantly, the size of re-
sulting Hamiltonian matrix is the same as if an usual mini-
mal basis set is used. Therefore, it is very efficient in the
following iteration process, which is the most time consum-
ing part of the calculation.

III. RESULTS AND DISCUSSION

We have done intensive tests of the MCMB for typical
III–V and group IV semiconductors under isotropic strain,
biaxial strain, and alloys. The overall results for the MCMB
are very satisfactory. We show the most results for GaAs as
an example but similar results are obtained for other materi-
als too.

A. Isotropic strain

Figure 2 depicts the total energies of GaAs as functions of
lattice constant calculated by using different basis sets. The
total energy calculated by using QUAMBOs is almost exact
to PW result �within 38 meV� at equilibrium lattice constant
�the reference state�. However, away from the equilibrium
lattice constant, the total energy increase much faster than
that calculated from PW basis. This is because that the QUA-
MBOs have many details that worsen the transferability. To
improve the transferability of the basis, we may smooth the
QUAMBOs by using less spherical Harmonics functions in
Eq. �3�. The results for the smoothed QUAMBOs �s QUA-
MBOs� with lmax=2 are shown in a blue curve in Fig. 2. We
see that the s QUAMBOs are much more transferable than

the original QUAMBOs. However, the total energies calcu-
lated using the s QUAMBOs are much higher than those of
the PWB. The total energy is 0.83 eV per atom higher than
that from PWB, even at the reference state. Therefore, the
direct use QUAMBOs or s QUAMBOs are not satisfactory.
We now turn to the MCMB. We see that the transferability in
the sense of total energy is very good. The total-energy curve
as the function of lattice constant is almost identical to that
of the PW results with energy cutoff 18 Ry, which is about
74 meV higher per atom than the PW results with energy
cutoff 36 Ry. This performance is comparable to the opti-
mized DZP, �i.e, two radial functions for each angular mo-
ment plus one polar orbital�, even TZP �i.e., three radial
functions for each angular moment plus one polar orbital�
bases in Ref. 14, which have much larger basis sizes.

In Table I, we compare the calculated lattice constants and
bulk modulus using the MCMB to those calculated from PW
basis and to the experimental values, for a wide range of
semiconductor materials. We see that the error of lattice con-
stants compared with PW results are generally within 0.4%.
The errors for In compounds are slightly lager. For bulk
modulus, the errors are somehow larger compared to the
PWB results, especially for InAs and InSb, in which the bulk
modulus are about 14% overestimate PWB calculation. We
find, however, by including the In d orbitals in the basis can
reduce the errors to about one third of those if no d orbitals
are used for both lattice constants and bulk modulus of In
compounds. On the other hand, although the equilibrium lat-
tice constants calculated from the original QUAMBOs are
very good, the calculated bulk modulus is way overesti-
mated. For example, the QUAMBOs give 170 GPa for
GaAs, which is more than twice of the PWB result.

We then test the performance of MCMB in the band-
structure calculations. Figure 3 shows the lowest eight bands
�four valence bands plus four conduction bands� calculated
at lattice constants a=9.45, 10.50, and 11.55 a.u., respec-
tively. The results of PWB are plotted in solid lines as the
references, whereas the MCMB bands are plotted in the dot-
ted lines. We see that for the valence states, the bands of the
MCMB are almost identical to the PWB ones at all three
lattice constants. The lowest conduction bands are slightly
worse but still quite good. However, the higher conduction
bands are shifted to higher energy and very different from
the PW results even at the reference state. This is because
when constructing the QUAMBOs, we only require that the
lowest five bands to be faithfully represented. The higher
conduction bands are not guarantee to be correct in the first
place. We also calculate the band structures using MCMB
constructed using only eight bands �i.e., the Wannier orbit-
als�. At the reference lattice constant, these orbitals gives
much better band structure for the conduction bands than the
above results. But they also fail for the higher conduction
band when away from the reference state. We attribute this
failure to the antibonding nature of the conduction bands,
which are very sensitive to the local basis.

Spillage7,8 is a useful parameter that measures the ability
of the local basis to represent PW eigenstates. The spillage
for a given local basis set is

9.5 10.0 10.5 11.0 11.5
Lattice constant (a.u.)

0.0

0.4

0.8

1.2

1.6

T
ot

al
E

ne
rg

y
pe

r
at

om
(e

v) PWB
MCMB
QUAMBO
s-QUAMBO

FIG. 2. �Color online� Comparison of the total energies of GaAs
as functions of lattice constant using the PWB, QUAMBOs,
s-QUAMBOs, and MCMB.
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S =
1

Nk

1

N�
�
k=1

Nk

�
�=1

N�

����k��1 − P̂�k�����k�� , �5�

where ����k�� are the Bloch states calculated from PW basis
for a certain k points. Nk and N� are the number of k points

and bands, respectively. P̂�k� is the projector operator de-
fined as

P̂�k� = �
��

�A��k��S��
−1�k��A��k�� , �6�

where

A��k� = �
R

A��r − r� − R�eik·�r�+R� �7�

in which r� is the atomic coordinates in the unit cell and R
the lattice vector.

S���k� = �A��k��A��k�� �8�

is the overlap matrix of the local basis. We calculate the
spillage of MCMB to the occupied bands for GaAs under
isotropic strain. We found that the spillage is between 6–7
	10−4 as the lattice constant vary from 0.9a0 to 1.1a0. These
values are almost an order of magnitudes smaller than 4
	10−3 if simple truncate PAOs are used as the basis.

We further compare the self-consistent charge densities of
the MCMB to those calculated from PWB. The error of
charge density is calculated as


�/Ne =
1

Ne
	 ��MCMB�r� − �PWB�r��d3r , �9�

where Ne is the total electrons in a unit cell. The error cal-
culated at the equilibrium lattice constant is 1.08% and is
smaller than 1.5% in the range of 9.5–11.5 a.u. We recalcu-
lated the band structures at the three lattice constants using
the PWB but fixed the charge densities to those calculated
from the MCMB. The results are shown in Fig. 4, compared
to the full PW calculations. Remarkably, the bands calculated
from the MCMB charge densities have virtually no differ-
ence with the full PW calculations. We may then have a very
useful scheme if the high accuracy band structures �espe-
cially the conduction bands� are needed: the charge density
which is the most time consuming part can be calculated by
the MCMB, whereas the band structure can be calculated by
the PWB. This scheme can be best combined with the so-
called folded spectrum method to give a very efficient
method,30 if only a small number of bands around certain
reference energy is needed.

B. Biaxial strain

In this section, we test the transferability of the MCMB
under biaxial strains. In many systems, the material is biax-
ially strained, for examples, the epitaxially grown superlat-
tice, self-assembled quantum dots, etc. The biaxial strain is
defined as

TABLE I. Comparison of the calculated lattice constants and bulk modulus B using PWB and MCMB for
typical III–V and group IV materials. An energy cutoff of 36 Ry and 4	4	4 k mesh are used for the PWB
calculation unless otherwise noticed. The MCMB calculation is constructed using 64 bands and 6	6	6 k
mesh. Calculations using MCMB are carried out using 4	4	4 k points and energy cutoff 36 Ry unless
otherwise indicated.

Lattice constant
�a.u.�

B
�GPa�

Materials PWB MCMB Experiment PWB MCMB Experiment

GaAs 10.50 10.51 10.68a 74 72 75.57c

GaPe 10.09 10.11 10.30a 90 88 89d

GaSb 11.36 10.40 11.52a 59 61 57d

InAse 11.28 11.22 11.45a 62 71 60d

InPe 10.93 10.87 11.09a 72 76 71d

InSb 12.09 11.97 12.24a 53 60 47d

AlAse 10.59 10.60 10.70a 74 77 77d

AlPf 10.21 10.23 10.33a 84 86 86d

AlSb 11.54 11.52 11.59a 58 62 58d

Ge 10.61 10.58 10.70c 73 78 77.20c

Sig 10.21 10.25 10.26b 92 101 99b

Ch 6.76 6.76 6.75b 466 465 442b

aReference 31.
bReference 32.
cReference 33.
dReference 34.
eA 6	6	6 k mesh is used.

fA 6	6	6 k mesh and energy cutoff 50 Ry are
used.
gLocal orbitals truncated at 5.5 a.u.
hLocal orbitals truncated at 4.0 a.u.
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�b = �zz − ��xx + �yy�/2. �10�

In the pure InAs/GaAs quantum dots, the biaxial strain is
usually about 0.15. The test is performed on the eight-atom
cubic cell of GaAs. We apply the biaxial strain by varying
the in-plane lattice constants a=b while keep the volume of
the unit-cell constant. The atomic positions are relaxed with
the fixed lattice constants using PW codes.

Figure 5 depicts the total energy per atom with respect to
the biaxial strain. At the reference state ��b=0�, the total
energy calculated from QUAMBOs are extremely close to
that calculated from PWB. However, again, the transferabil-
ity of QUAMBOs is very bad. In contrast, MCMB show
remarkable transferability in the wide range of biaxial stain
from �b=−0.30 to 0.30. The total energies are also within 74
meV per atom higher than the PW results with energy cutoff
36 Ry.

Figures 6�a�–6�c� compare the density of states �DOS�
calculated using MCMB to those using PWB, at �b=0.15, 0,
and −0.15, respectively. The DOS is plotted with a Gaussian
smearing of 0.07 eV. As we see, the valence states are almost
identical for the two bases. The lowest states above the
Fermi level are also very close. However, the higher conduc-
tion bands can not be described very well by MCMB and
show large discrepancy to the PW results, as expected.

C. Alloy

Alloys provide a challenge test for the transferability of
local orbitals because in addition to the atomic position dis-
tortions, the chemical environment are very different from
their bulk materials. We carry out the tests in the In1−xGaxAs
supercells containing 64 atoms. Since in the present case, we
care only about the electronic structures, we relax the atomic
position using a PW code. The lattice constants of the super-
cell are approximated by a=x ·a0�GaAs�+ �1−x� ·a0�InAs�,
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FIG. 3. �Color online� Band structures of GaAs of different
lattice constants, �a� 0.9a0, �b� a0, and �c� 1.1a0. The PWB results
are shown in the solid black lines, whereas the results from MCMB
are shown in dotted blue lines.
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where a0�GaAs� and a0�InAs� are the lattice constants of
GaAs and InAs, respectively. In the alloy, the As atoms may
have Ga or In as their NN atoms at the same time. We then
have two sets of �i�j functions for As atoms, one set from
GaAs and the other from InAs, whereas the center of the As
PAO �i��r� are equal for the two sets. We choose the
�i�j�r−r j� functions according to the atomic type on r j site.
The DOS of the alloys are compared in Figs. 7�a�–7�c� for
three compositions x=0.25, 0.5, and 0.75, respectively. We
see that the DOS calculated from MCMB �dotted lines� are
in remarkable agreement with those from PWB �solid lines�
for valence electrons and the low energy conduction states.
The DOS high energy states are very off from PWB results
as expected.

Occasionally one has to deal with the defects that may
change the coordination number of the bulk materials, such
as vacancies, interstitials, etc. In these cases, the direct use of
MCMB for the vacancies, interstitials, etc. may not be satis-
factory. However, one can use �standard� larger local basis
sets for the few atoms around vacancies, interstitials, etc.
while use MCMB for the rest atoms to achieve high accuracy
and the same time efficiency.

IV. SUMMARY

Wannier �or Wannier-type� functions are themselves mini-
mal basis sets that are exact for the reference states. How-

ever, the Wannier and Wannier-type function are unavoidably
have structures around their adjacent atoms that hamper their
transferability for the ab initio calculations. We have pro-
posed a unique scheme to construct transferable localized
minimal basis for efficient, large scale DFT calculations. The
local orbitals are composed of a �truncated� PAO Plus aug-
mentation localized in its nearest atoms. We have tested the
transferability of the basis sets under isotropic strain, biaxial
strain, and alloys for typical III–V and group IV semiconduc-
tors, and obtained very satisfactory results. The scheme
could be useful for studying extremely large systems that are
very close to their bulk compounds, such as alloys, defects,
super lattices, quantum wires, quantum dots, etc. We believe
that the MCMB is a very useful supplement to the standard
extended atomic basis sets �example, multi-� basis, etc.�. The
work also clarified why the generalized Wannier functions or
Wannier-type functions are not transferable.

ACKNOWLEDGMENTS

L.H. acknowledges the support from the Chinese National
Fundamental Research under Program No. 2006CB921900,
the Innovation funds and “Hundreds of Talents” program
from Chinese Academy of Sciences, and National Natural
Science Foundation of China under Grant No. 10674124,
W.F. and G.S. were supported by National Natural Science
Foundation of China under Grant No. 60533020.

-10 -5 0 5 10
0.0

1.0

2.0

3.0

4.0

D
O

S
(e

le
ct

ro
ns

/c
el

l)

-10 -5 0 5 10
0.0

1.0

2.0

3.0

4.0

D
O

S
(e

le
ct

ro
ns

/c
el

l)

-10 -5 0 5 10
Energy(ev)

0.0

1.0

2.0

3.0

4.0

D
O

S
(e

le
ct

ro
ns

/c
el

l)

(b) ε b = 0

(c) ε b = -0.15

(a) ε b = 0.15

EF

F

F

E

E

FIG. 6. Density of states of GaAs supercell containing eight
atoms under biaxial strain for �a� �b=0.15, �b� �b=0, and �c� �b=
−0.15.

-15 -10 -5 0 5 10
0

5

10

15

20

25

D
O

S
(e

le
ct

ro
ns

/c
el

l)

-15 -10 -5 0 5 10
0

5

10

15

20

25

D
O

S
(e

le
ct

ro
ns

/c
el

l)

-15 -10 -5 0 5 10

Energy (ev)

0

5

10

15

20

25

D
O

S
(e

le
ct

ro
ns

/c
el

l)

(a) x=0.25

(b) x=0.5

(c) x=0.75

EF

F
E

E
F

FIG. 7. Density of states of GaxIn1−xAs alloys with �a� x=0.25,
�b� x=0.5, and �c� x=0.75.

CHEN et al. PHYSICAL REVIEW B 80, 165121 �2009�

165121-6



*Corresponding author; helx@ustc.edu.cn
1 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 �1964�.
2 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 �1965�.
3 M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D.

Joannopoulos, Rev. Mod. Phys. 64, 1045 �1992�.
4 S. Goedecker, Rev. Mod. Phys. 71, 1085 �1999�.
5 R. W. Jansen and O. F. Sankey, Phys. Rev. B 36, 6520 �1987�.
6 O. F. Sankey and D. J. Niklewski, Phys. Rev. B 40, 3979 �1989�.
7 D. Sanchez-Portal, E. Artacho, and J. M. Soler, Solid State Com-

mun. 95, 685 �1995�.
8 D. Sánchez-Portal, E. Artacho, and J. M. Soler, J. Phys.: Condes

Matter 8, 3859 �1996�.
9 E. Hernandez, M. J. Gillan, and C. M. Goringe, Phys. Rev. B 55,

13485 �1997�.
10 P. D. Haynes and M. C. Payne, Comput. Phys. Commun. 102,

17 �1997�.
11 E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J. M.

Soler, Phys. Status Solidi B 215, 809 �1999�.
12 S. D. Kenny, A. P. Horsfield, and H. Fujitani, Phys. Rev. B 62,

4899 �2000�.
13 C. K. Gan, P. D. Haynes, and M. C. Payne, Phys. Rev. B 63,

205109 �2001�.
14 J. Junquera, O. Paz, D. Sanchez-Portal, and E. Artacho, Phys.

Rev. B 64, 235111 �2001�.
15 E. Anglada, J. M. Soler, J. Junquera, and E. Artacho, Phys. Rev.

B 66, 205101 �2002�.
16 T. Ozaki, Phys. Rev. B 67, 155108 �2003�.

17 W. Kohn, Phys. Rev. 115, 809 �1959�.
18 L. He and D. Vanderbilt, Phys. Rev. Lett. 86, 5341 �2001�.
19 D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot

Heterostructures �John Wiley & Sons, New York, 1999�.
20 W. Hierse and E. B. Stechel, Phys. Rev. B 54, 16515 �1996�.
21 D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43,

1494 �1979�.
22 L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425

�1982�.
23 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 �1976�.
24 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 �1997�.
25 I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65,

035109 �2001�.
26 H. Feng, J. Bian, L. Li, and W. Yang, J. Chem. Phys. 120, 9458

�2004�.
27 W. C. Lu, C. Z. Wang, T. L. Chan, K. Ruedenberg, and K. M.

Ho, Phys. Rev. B 70, 041101�R� �2004�.
28 S. L. Altmann and A. P. Cracknell, Rev. Mod. Phys. 37, 19

�1965�.
29 P. W. Anderson, Phys. Rev. Lett. 21, 13 �1968�.
30 L. W. Wang and A. Zunger, J. Chem. Phys. 100, 2394 �1994�.
31 I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl.

Phys. 89, 5815 �2001�.
32 C. Kittle, Introduction to Solid State Physics �Wiley, New York,

1986�.
33 Y.-M. Juan and E. Kaxiras, Phys. Rev. B 48, 14944 �1993�.
34 M. L. Cohen, Phys. Rev. B 32, 7988 �1985�.

METHOD TO CONSTRUCT TRANSFERABLE MINIMAL… PHYSICAL REVIEW B 80, 165121 �2009�

165121-7


